SYNTHESIS AND STRUCTURE-ACTIVITY RELATIONSHIPS OF C-4-AMINO ACID SUBSTITUTED MONOBACTAM ANALOGS

Sir:

Since the discovery of the new monocyclic β -lactam compounds, extensive efforts have been made to improve the biological activities of this

class of β -lactam compounds by various research groups.^{1,2)} Considering the peptide nature of the β -lactam compounds we thought it would be interesting to introduce the various amino acid moieties at C-4 of the monobactam as shown in general formula **1**.

This communication discusses the preparation of this series of monobactams and their structureactivity relationships.

8 DBU=1,8-Diazabicyclo[5.4.0]undec-7-ene

The C-4 amino acid-substituted monobactams were prepared as outlined in Scheme 1. Racemic carbomethoxyazetidinone (2)³⁾ was reduced by zinc borohydride to obtain the C-4 hydroxymethyl azetidinone (3). Catalytic hydrogenation followed by coupling with the appropriate C-3 aminoacyl side chain produced oximeaminothiazole azetidinone (4). The amino acid moiety was introduced at C-4 by use of the DCC-HOBT method to obtain β -lactam compound 5. Sulfonation on the lactam ring nitrogen atom followed by tetra-N-butyl ammonium salt formation, deprotection, cation exchange to give the potassium salt and purification through Diaion HP-20 resin afforded *cis*- (\pm) -monobactam 6.

Monobactam 6 was obtained as a diastereomeric mixture except in the case of glycine.

We also prepared *trans*- (\pm) -monobactam 7 and chiral monobactam 8 *via* epimerization and resolution,⁴⁾ respectively (Scheme 2).

Results and Discussion

In general, as the C-4 substituents become more hydrophilic and smaller in size, the activity against Gram-negative organisms increases. We believe that this is very well in line with the studies which correlate the polarity and size of the molecules with the permeability of the outer membrane of the cells.^{5~77}

More hydrophilic ammonium compounds (6i, 6j) were thought to increase the Gramnegative activity. However, the activity is just comparable (6f vs. 6i) or even slightly lower than that of the *N*-formyl compounds (6h vs. 6j).

D-Amino acid analog (6h) shows 2-fold more activity than L-analog (6g) both *in vitro* and *in*

Table 1. Effects of C-4 substituents on the activity.

n

(A) Aminothiazole methoxime C-3 side chain.

$H_2N \rightarrow N \rightarrow C \rightarrow C \rightarrow N \rightarrow CH_2OCOR$ N OCH3 O N 503 ⁻ K ⁺									
(Racemic)									
	MIC (µg/ml) ^a								
6	R	Streptococcus pneumoniae UC 41 ^b	Escherichia coli UC 311	Klebsiella pneumoniae UC 58	Pseudomonas aeruginosa UC 9191				
ба	~H~~o	32	2	1	128				
6b	(U-69,938B diastereomeric mixture) $\downarrow N \downarrow 0$ (U-71,090B diastereomeric mixture)	8	16	8	>128				
6c	$CH_2NHCOOCH_2C_6H_5$ (U-71,091B)	4	16	8	128				
6d	CH₂NHCOCH₃ (U-71,092B)	16	0.5	0.25	32				
6e	CH₂NHCHO (U-71,093B)	16	<0.12	<0.12	8				

^a Minimum inhibitory concentrations (MIC) were determined by a 2-fold dilution in Mueller-Hinton agar; inoculum of 10⁴ cfu.

^b UC is a registered trademark of The Upjohn Company.

vivo. We cannot at this time relate this result to any single parameter such as the configuration of the amino acid.

The methoxime side chain compound (6e) shows stronger activity against Gram-positive bacteria than do the oximecarboxylic acid side chain compounds (6f, 6k) though their activities are only moderate.

Both methoxime and oximeacetic acid compounds (6e, 6f) have comparable *in vitro* activities against Gram-negative organisms except *Pseudomonas aeruginosa*. In the case of *P. aeruginosa*, the oximeacetic acid compound (6f) is superior to the methoxime side chain compound (6e). Despite the comparable potent *in vitro* activity, the methoxime compound (6e) does not show good *in vivo* activity while both oximecarboxylic acid compounds (6f, 6k) have good *in vivo* activity. This was somewhat surprising considering the fact that methoxime aminothiazole has been used successfully in the cephalosporin antibiotics (example; cefotaxime).

The activity of the oximeisobutyric acid side chain compound (6k) is decreased markedly relative to that of the oximeacetic acid side chain compound (6f). This oximeisobutyric acid side chain also has been used successfully in the cephalosporins (example; ceftazidime) and aztreonam. It is difficult to understand this discrepancy although the oximeisobutyric acid side chain must be more hydrophobic than the oximeacetic acid side chain.

The overall activity of the *trans*-monobactam isomer (7) was much inferior to that of the *cis*-monobactam isomer (6f). The chiral molecule (8) shows twice the activity of that of the racemic molecule (6f). In conclusion, the chiral *N*-formylglycine substituted monobactam (8) de-

Table 1. (Continued)

(B) Aminothiazole oximecarboxylic acid C-3 side chain.

10	• •
1 Pacem	10)
(Itacon)	

			MIC (µg/ml) ^a					
6	R_i	\mathbf{R}_2	Streptococcus pneumoniae UC 41 ^b	Escherichia coli UC 311	Klebsiella pneumoniae UC 58	Pseudomonas aeruginosa UC 9191		
6f	H_2	CH ₂ NHCHO	64	0.125	0.125	16		
6g	\mathbf{H}_2	(U-70,887B) CH ₃	>128	1	1	>128		
-	-	(U-71,055B)						
6h	H_2	СН ₃ СНNНСНО (D) (U-71,056B)	>128	0.5	0.5	128		
6i	H_2	CH_2NH_3 (zwitter ion) (U-71,328)	128	0.125	0.125	8		
6j	H_2	CH ₃	>128	2	2	128		
6k	(CH ₃) ₂	CH-NH ₃ (D) (zwitter ion) (U-71,740) CH ₂ NHCHO (U-71,699B)	>128	0.5	0.5	128		

Table 3. Effects of stereochemistry of C-3 and C-4.

$H_2N \xrightarrow{S}_{N} \xrightarrow{O}_{C} \xrightarrow{H}_{K} \xrightarrow{H}_{K} \xrightarrow{R_1}_{K} \xrightarrow{R_2}_{K+2} \xrightarrow{O}_{K+2} \xrightarrow{K+2}_{COOH} \xrightarrow{C}_{K+2} \xrightarrow{K+2}_{K+2} \xrightarrow{K+2} \xrightarrow{K+2}_{K+2} \xrightarrow{K+2} K+2$								
	O II							
	6f (U-70,887B) $R_1 = H$, $R_2 = CH_2OCCH_2NHCHO$ (Racemic)							
	7 (U-71,916B) $R_1 = CH_2OCCH_2NHCHO$, $R_2 = H$ (Racemic) O							
	8 (U-71,568B) $R_1 = H$, $R_2 = CH_2OCCH_2NHCHO$ (Chiral)							
-	MIC ($\mu g/ml$)							
	Escherichia coli UC 311	Klebsiella oxytoca UC 9384	Klebsiella oxytoca UC 9383	Serratia marcescens UC 6888	Pseudomonas aeruginosa UC 9191	Pseudomonas aeruginosa 30133		
6f (U-70,887B)	0.125	0.125	1	0.25	8	16		
7 (U-71,916B)	0.125	0.125	16	0.25	128	>128		
8 (U-71,568B)	0.06	0.06	0.5	0.25	4	8		

Table 2. Effects of C-3 side chain.

(Racemic)	(Racem	ic)
-----------	--------	-----

		MIC (µg/ml)						In vivo	
6	R	Streptococcus pneumoniae UC 41	Staphylococcus aureus UC 6675	Klebsiella pneumoniae UC 58	Escherichia coli UC 9379	Pseudomonas aeruginosa UC 9191	Pseudomonas aeruginosa UC 6432	Serratia marcescens UC 6888	(mg/kg, sc) <i>E. coli</i> UC 9451
6e	CH ₃ (U-71,093B)	16	128	<0.12	0.25	. 8	64	1	>50
6f	CH ₂ COOH (U-70,887B) CH ₃	64	>128	0.125	0.25	8	16	0.25	6.2~14
6k	 CCOOH CH ₃ (U-71,699B)	>128	>128	0.5	1	64	128	1	21.8

monstrates a very potent activity against Gramnegative organisms including *P. aeruginosa*.

Acknowledgment

We are grateful to G. E. ZURENKO, B. R. HANNON, C. W. FORD and J. C. HAMEL for the biological activity testing.

> KYOUNG S. KIM JAMES H. CHAMBERS

Infectious Diseases Unit, The Upjohn Company, Kalamazoo, Michigan 49001, U.S.A.

(Received September 1, 1986)

References

1) SYKES, R. B.; C. M. CIMARUSTI, D. P. BONNER, K.BUSH, D.M. FLOYD, N.H. GEORGOPAPADAKOU, W. H. KOSTER, W. C. LIU, W. L. PARKER, P. A. PRINCIPE, M. L. RATHNUM, W. A. SLUSARCHYK, W. H. TREJO & J. S. WELLS: MONOCYCLIC β -lactam antibiotics produced by bacteria. Nature 291: 489~491, 1981

- IMADA, A.; K. KITANO, K. KINTAKA, M. MUROI & M. ASAI: Sulfazecin and isosulfazecin, novel β-lactam antibiotics of bacterial origin. Nature 289: 590~591, 1981
- HUFFMAN, W.F.; K.G. HOLDEN, T.F. BUCKLEY, III, J. G. GLEASON & L. WU: Nuclear analogues of β-lactam antibiotics. 1. The total synthesis of a 7-oxo-1,3-diazabicyclo[3.2.0]heptane-2-carboxylic acid via a versatile monocyclic β-lactam intermediate. J. Am. Chem. Soc. 99: 2352 ~ 2353, 1977
- KISHIMOTO, S.; T. MATSUO & M. OCHIAI (Takeda Chem.): 1-Sulfo-2-azetidinone derivatives, their production and use. Eur. Pat. Appl. 93376, Apr. 26, 1983
- NIKAIDO, H. & T. NAKAE: The outermembrane of Gram-negative bacteria. Adv. Microb. Physiol. 20: 163~250, 1979
- CHOPRA, I. & P. BALL: Transport of antibiotics into bacteria. Adv. Microb. Physiol. 23: 183~240, 1982
- 7) YOSHIMURA, F. & H. NIKAIDO: Diffusion of β -lactam antibiotics through the porin channels of *Escherichia coli* K-12. Antimicrob. Agents Chemother. 27: 84~92, 1985